

University Climate Report

Report Scope

This report is team based, wherein teams may be inter-universitary. There are two types of projects, problem based projects and explanatory based projects - prompts can be selected from the list in the application form. In problem based projects your team researches different solutions to a problem, the viability of each one, and concluding on the overall feasibility of solving the problem.

For example, last year a team identified that fishing boats habitually toss their plastic nets overboard, responsible for around 10% of microplastic generation in the sea (Osman et al 2023), and found that of all possible solutions, an RFID tag government policy would be the most feasible way to combat this problem. Explanatory based projects intuitively describe a topic from the ground up, in a manner that is engaging even for those with limited prior knowledge; examples would be fusion, fission and transistors; though it would eventually take a similar form to a problem-based project, as there would be multiple types of fusion that would be compared in terms of their feasibility.

It is also great to make the article exciting for the reader, for instance if your team was doing an explanatory article on fission, you could have a section on the Chernobyl Meltdown, and explain exactly why it happened.

It is important to know that in your team's assessment of a technology as a potential solution, not just technical considerations should be made. For power generation, a meltdown resistant small modular fission reactor with layers of redundancy to ensure no failure is a great choice, and technically possible given current technology, but we must appreciate that legally this will not be possible for the foreseeable future, nor financially in many settings.

It is alright if your team is working on the same project prompt as another team, as the prompt can easily be split between teams; for the first bit of work you work independently and come up with preliminary arguments, you then meet with the other team to see where you agree and do not agree, and then form a joint-argument based on consensus — this co-validation is incredibly key to the final quality of the report. After this discussion, you split up the topic and continue as normal, which ensures that there is no redundant work (i.e. if there are 4 solutions you are investigating and 2 teams, 2 per team). Another important reason for allowing more than one team to work on a project is it gives more people access to work on the topic they are interested in. Even still, the number of teams per prompt will be limited mostly to 2, to ensure that each team has enough to work on.

There is the potential, as part of this project, to host an exhibition in the London Science Museum (most likely the plastics topics, details will follow once teams are formed), as well as interview professionals in industry as well as relevant companies. Last year's report (see on USI website) was requested by the UK Government (specifically DESNES), so this project has a high opportunity for impact, as well as learning.

Timeline

6 October 2025	Applications Open
17 October 2025	Applications Close
20 October 2025	Teams formed
24-28 November 2025	co-Team Discussion (final argument formed and work split)
13 February 2026	1st draft submitted
20 March 2026	Final Report Published